Laser retinopexy
Tereza Štěpánek Zavadilová
Veterinární nemocnice Libuš, Praha
Case Report

- Italian Greyhound
- Akina, F, 5 years old
- Anamnesis: anisocoria for 3 weeks
- No signs of neurology problem and any systemic diseases
- Clinical examination, X-ray of thorax, abdominal USG, blood tests negative
Ophthalmology examination

- OS: menace response -, dazzle reflex -, pupilary reflex -, palpebral reflex +, absolute mydriasis was evident, severe vitreal changes, total retinal detachment, STT 20, IOP 13
- OD: menace response +, dazzle reflex +, pupilary reflex +, palpebral reflex +, vitreal strand in the anterior chamber, severe vitreal changes, STT 22, IOP 15
Diagnosis

- Bilateral Vitreous Degeneration
- Giant retinal tear in the left eye
- Vitreal strand in the anterior chamber in the right eye
- Prophylactic Laser Retinopexy in the right eye
- Monitoring of lens instability
- Left eye - untreatable
Surgery Procedure

- Transpupillary retinopexy
- LIO – laser indirect ophthalmoscope
- 20D loop
- General anesthesia
- Ventral recumbency
- Eyelid retractor, stay sutures
- A double row of noncontiguous burns on the peripheral retina for 360 degrees is performed
- 100-150mW/200-400mS
- Avoid excessive energy – can cause choroidal hemorrhage or a retinal hole
Table 3. Recommended initial power settings for diode laser retinopexy in the dog

<table>
<thead>
<tr>
<th>Region of fundus</th>
<th>Power settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central nontapetal (mild to moderate pigment)</td>
<td>150 mW–200 mS</td>
</tr>
<tr>
<td>Peripheral nontapetal (moderate pigment)</td>
<td>100 mW–200 mS</td>
</tr>
<tr>
<td>Central tapetum (yellow-green color)</td>
<td></td>
</tr>
<tr>
<td>Medial</td>
<td>200 mW–200 mS</td>
</tr>
<tr>
<td>Lateral</td>
<td>150 mW–400 mS</td>
</tr>
<tr>
<td>Central Tapetum (bright yellow color)</td>
<td></td>
</tr>
<tr>
<td>Medial</td>
<td>200 mW–400 mS</td>
</tr>
<tr>
<td>Lateral</td>
<td>200 mW–500 mS</td>
</tr>
<tr>
<td>Peripheral Tapetum or Tapetal/NonTapetal Junction</td>
<td>150 mW–200–400 mS</td>
</tr>
</tbody>
</table>

mW, milliwatts; mS, milliseconds.

Laser retinopexy
Follow up

- Postoperative treatment
 - Systemic corticosteroids
 - Topical corticosteroids
 - Mydriatics
- IOP measurement, 1 day hospitalization
- Local retinal inflammatory reaction disappear three days postop.
Discussion

• study of 760 eyes with RRD, 350 fellow eyes prophylactic treatment, RRD developed in 1,2% of treated eyes compared with 16,4% in the untreated group (Avitable, 2004)

• Another study: retinal breaks developed in 27% of untreated eyes compared with 4% of treated fellow eye (Freeman, 2001)

• Bichon Frise with cataracts associated with LIU – 57 dogs: 39 dogs received prior laser retinopexy before surgery, RRD developed in 5 dogs (12%). In 18 dogs that did not receive treatment, 10 dogs (55%) experienced RRD (Schmidt & Vainisi, 2004)

• Depends on RD causes
Transpupillary x Transcleral retinopexy
Transpupillary x Transcleral retinopexy
Transpupillary x Transcleral retinopexy

- Less invasive (non contact)
- Ocular media must be clear to permit focus on the target retina
- Diode laser 810nm has the best transmission
- **Prophylactic retinopexy** – vitreal degeneration, lens subluxation, cataract formation (predisposed breed)
- **Barrier retinopexy** – small tears, retinal holes, thin areas of retina associated with geographic retinal dysplasia
- **Demarcation retinopexy** – to stop partial RD
- Max. 250 mW for 400 msec

- Laser probe is in contact with the sclera
- Aproximately 9mm from the limbus, given 75-85 burns around the globe
- 750 mW for 1000 msec
- **Prophylactic retinopexy** before cataract surgery, in cases of LIU
- Bichon Frise, American Cocker Spaniel, Siberian Husky, Havanese – predisposed breed for peripheral retinal detachment after cataract surgery
- Higher risk of excessive treatment resulting in retinal holes or a giant retinal tear
Barrier Retinopexy
Demarcation Retinopexy
Retinal detachment

- separation of the neurosensory retina from underlying retinal pigment epithelium (RPE)
- Rhegmatotogenous (RRD)
- Nonrhegmatogenous (non-RRD)
Rhegmatotogenous Retinal Detachment (RRD)

- fluid from the vitreous cavity enters the subretinal space through a break in the retina
- **primary** (spontaneous)
- **secondary** (due to trauma, inflammation, surgery or other specific ocular disorder)
Primary RRD

• by alteration or degeneration of the vitreous

• Vitreous
 – most important intraocular tissue in the pathogenesis of retinal detachment
 – is composed of salts, proteins and hyaluronic acid contained in a network of insoluble protein fibrils
 – is attached to the retina via collagen fibrillar insertions into the internal limiting membrane
 – In the canine - "nuclear type" - opposite of that in humans
The vitreous body

- Eye movements result in countercurrents of the vitreous and intraocular fluids - can cause turbulence to induce a tear in the area of retinal atrophy

- **Vitreous degeneration** (Abnormal liquid vitreous) heritable disease in 11 breeds of dogs (Shih Tzu, Boston Terrier, Poodle, Jack Russell Terrier, Italian Greyhound and Yorkshire Terrier), reported in 85 other breeds

- The highest incidence of clinical spontaneous giant retinal tear - **head shaking dogs** (while playing with toys)
Secondary RRD

- Trauma
 - penetrating - bite wounds, cat claw injury, surgery
 - blunt
- Glaucoma
- Lens diseases
- Intraocular surgery
- Aggressive cryo or laser therapy
Non-RRD

- **Serous** - results from fluid accumulation in the subretinal space between the photoreceptors and the RPE
 - Exudative detachment
 - Hemorrhagic detachment
- **Tractional** - pulling force (band or membrane) in the vitreous that forces the retina to separate from the RPE
 - Intravitreal hemorrhage
 - Persistant hyaloid remnants
 - Iatrogenic – intraocular surgery
Most common causes of RD

- **Hypermature cataract and Lens induced uveitis (LIU)**
 - can cause vitreal degeneration, retinal cyst formation, obliteration of retinal vessels
 - Breeds (the Bichon Frise, Maltese, American Cocker Spaniel) with rapidly progressive cataract formation - more prone to LIU

- **Lens instability**
 - causes a disruption in the anterior hyaloid face, causing disturbance of the vitreous

- **Cataract surgery**
 - posterior capsular tear
 - vitreal hemorrhage
Most common causes of RD

- Retinal abnormalities
 - Retinal dysplasia (LR, ESS)
 - CEA - Optic nerve coloboma or pit can directly communicates with the subretinal space and can allow fluid from liquefied vitreous create an RD
 - Senile retinal thinning and atrophic retinal holes
Other RD causes

• **Endophthalmitis (chorioretinitis)**
 – inflammatory response to ocular infection - bacterial, viral, fungal or parasitic
 – After intraocular surgery
 – Cat claw injury
 – Foreign body penetration

• **Iatrogenic**
 – aggressive laser or cryoablation of the ciliary body
 – During cryopexy or prophylactic transscleral laser retinopexy
 – Intravitreal or retrobulbar injections
Conclusion

• Risk factors:
 – Breeds predisposition
 – Cataract surgery
 – LIU
 – Lens luxation
 – Vitreous degeneration
 • Shi Tzu, Boston Terrier, JRT, Italian Greyhound, YT, Maltese, Poodle
 – Retinal dysplasia
 – CEA
Thank you for your attention